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ABSTRACT

The Helmholtzor scalar wave equation (2 + k2 ) = 0 is separable in oblatespheroidal coordinates q,(,q with solutions Y = S (ih, ) (ik, -if ) (). Thesubject of this report is a Fortran computer program called OBRAD which nu-merically evaluates the radial solutions (ih, -i). The printed output fromOBRAD consists of radial functions of the first and second kind,fiA - if ), their first derivatives a RF),(2) (ih, - i)/&a, the separation constantsor eigenvalues Ag (ih), and an accuracy check. This report first describes theinput data cards and the output format. The theory of the oblate spheroidal wavefunction is then discussed. A description of the principal internal features ofOBRAD is then given. Finally a computer listing of OBRAD is attached as anappendix.

PROBLEM STATUS

This is an interim report on a continuing NRL Problem.
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A FORTRAN COMPUTER PROGRAM FOR CALCULATING THE OBLATE SPHEROIDAL

RADIAL FUNCTIONS OF THE FIRST AND SECOND KIND

AND THEIR FIRST DERIVATIVES

INTRODUCTION

The Helmholtz or scalar wave equation (V2 + k2) p = 0 is separable in oblate

spheroidal coordinates, with solution T = S (7) R ()4 (p). The subject of this report is

a Fortran computer program called OBRAD (OBlate RADial) which evaluates the

solutions R (e) in the radial spheroidal coordinate e. Although other methods of computing

the radial functions Rmi (,)(1),(2) of the first and second kind and their first derivatives are

available, it will be the procedure of this report to obtain them from expansions in terms

of Bessel and Legendre functions.

Oblare spheroidal wave functions of the radial type constitute an essential element

in numerical calculations involving diffraction, radiation, and scattering of acoustic

waves, electromagnetic fields of circular disks and apertures, energy levels of certain

nuclear models, and the resonant behavior of certain spheroidal cavities. An extensive

list of references on calculations and applications of spheroidal wave functions is given

in Ref. 1.

The two independent solutions Rmi (6)(1),(2) of the radial equation are characterized

by four parameters: (called X), 31, H, and L. M is the integer separation constant re-

lating to the solution for the rotational angle cp . H is equal to kd/2, where d is the

interfocal distance, and k is the propagation constant or wave vector magnitude 227/Ak

For each choice of A, H, and X there will be a set of solutions to the radial equation,

each solution characterized by a separation constant or eigenvalue A. It is convenient

to order these eigenvalues in an ascending sequence and label them with integers L, be-

ginning with L = M for the smallest eigenvalue, L = M + 1 for the next one, etc. This

choice is made so that the solutions reduce to that for a spherical coordinate system as

H approaches zero. In the spherical case the eigenvalues are simply given by L (L + 1).

For each choice of M, H, X, and L there will then be two independent radial functions.

Operationally the program OBRAD is divided into several parts. In the first part M

and H are set and the eigenvalues are calculated for the desired range of L. In the

second part, X is chosen, and the expansion functions, Bessel or Legendre, are obtained.

Finally for each choice of L the expansion constants are obtained and combined with the

expansion functions to give the radial functions and their first derivatives.

1
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VAN BUREN, BAIER, AND HANISH

INPUT

The input consists of five data cards:

Data Card 1: Format 814. This card contains the integer value MI of the first M de-
sired; IDM, the increment in M used to generate higher values of M; NM, the number of
values of H that are desired; LI, the initial integer value of L; DL, the increment in L;
NL, the number of values of L that are desired; NH the number of values of H that are
desired; and NX, the number of values of X that are desired.

Data Card No. 2: Format D32.25. This card contains A, which is the initial
decimal value of H.

Data Card No. 3: Format D32.25. This card contains D, which is the increment
in H.

Data Card No. 4: Format D32.25. This card contains XI, which is the initial
decimal value of X.

Data Card No. 5: Format D32.25. This card contains DX which is the increment
in X.

OUTPUT

The output consists of numerical tables, one page for each set of selected values H,
M, and X. Each table gives the radial functions of the first and second kind, R1 and R2,
their first derivatives, RID and R2D, and the eigenvalue for all choices of L that were
requested. Only 18 significant figures are printed in the table, although 26 significant
figures are calculated and more than 18 of these may be accurate.

An accuracy check is included for the radial functions and their first derivatives.
This is obtained by comparing the theoretical value of the Wronskian W [R(l), R 2 ) of
the radial solutions to the value actually calculated from the radial functions and their
first derivatives. It gives either the number of digits that agree in the theoretical and
calculated Wronskians (or one less, because of truncation error). When X = 0, either R)
or its first derivative is equal to zero. The Wronskian is then insensitive to inaccuracies
in either R(2) or its first derivative. In this case the accuracy is determined by sub-
tracting from 25 the number of significant figures that are inaccurate due to subtraction
errors (Ref. 11).

Experience has demonstrated that this program will deliver correct results if the
eigenvalues Ag are correct and the Wronskians check as noted above. Examination of
the eigenvalues for continuity is a helpful check on their correctness.

A sample page of the output from OBRAD is presented in Appendix C.
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PARAMETER RANGES

To use this program effectively, it is necessary to understand the limitations on the

four parameters M, H, L, and X. The ranges that the program has been tested for are as

follows:

M = 0 through 10

H = 0.01 through 75

L = M through M + 49

X = 0; 0.02 through 100

Limitations on parameters are as follows.

M: In general, accuracy is not much affected with increasing M. For this reason one

could reasonably expect good results for values of M greater than 10.

H: The range on H may easily be extended in both directions. Good results should

be obtained for values of H as small as 0.001. However, the accuracy may fall off for

values of H greater than 75, especially when X is small and L is large. Since the matrix

determination of starting values for the eigenvalues as programmed in OBRAD is in-

adequate for values of H greater than 75, a formula given by Meixner (2) is used in this

case.

L: The upper limit on L may be extended beyond M + 49. For H < 20, L can probably

be extended to M + 79. As H is increased from 20 to 75, the upper limit on L must be re-

duced from M + 79 to the present limit of M + 49. As was mentioned, a larger matrix for

computing eigenvalues would be required to extend the upper limit on L beyond this.
When the range is extended, the eigenvalues should be examined carefully for continuity.

Since the difference between successive eigenvalues becomes nearly constant for large
L, this is the best check on their validity.

X: The range for X was determined by the physical problem. X = 0 represents the

surface of a disk and is useful for this reason. The flattest near-disk that one might

consider would probably correspond to a value of X no less than 0.02. The upper limit

on X was chosen arbitrarily and could probably be extended with little difficulty to well

over 100.

ACCURACY CURVES

Several graphs of the calculated accuracy as a function of H and for a fixed value of

X are given below in Figs. 1 through 5. The arrow indicates the range of accuracy for

L = M to L = M + 49 and for M = 0 to M = 10. The lower accuracy usually corresponds to

higher L. For the parameter ranges listed above OBRAD will produce values for R"')

and its first derivative that are accurate to at least 20 significant figures. When the

Wronskian check is less than 20 significant figures, it indicates lower accuracy only in

R(2) and its first derivative.

3
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COMPUTATION TIME

Using the CDC 3800 the compilation time of OBRAD is about 48 seconds. The
execution time varies, but if all 50 values of L are requested, the average time will be
about 0.4 second for each set of R, RID, R2, R2D, and eigenvalue.

SOLUTION OF THE HELMHOLTZ EQUATION IN OBLATE SPHEROIDAL COORDINATES

Details of the oblate spheroidal coordinate system, which is an orthogonal coordinate
system, are given in Ref. 1. Briefly, the three oblate spheroidal coordinates are , 
and Ap, where 0 < < , - 1 < •1 < 1, and 0 < < 2 r - The surfaces of constant .
the radial coordinate, are represented in the yz Cartesian system by the locus

(d2 + 2 1 2

(2)( (1)
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VAN BUREN, BAIER, AND HANISH

This describes an oblate spheroid whose interfocal distance is d. The surfaces of
constant , the angle coordinate, are represented by the locus

ad ) =1+ d (2)( (2 ) (22 
This defines a hyperboloid of one sheet whose focus is located a distance d/2 from the
origin of the Cartesian system.

The surfaces of constant q), the rotational coordinate, are half planes whose edge is
the axis.

Any point in three-space can then be represented by the triad (, , ).

The scalar wave equation (V2 +k2) 'F = 0 is separable in oblate spheroidal coordinates.
Adopting with slight modifications the notation of Morse and Feshbach (3), we write

v = S(i, 1 )R(ih,-i;) cos p (3)sin m(

where

h k . (4)

The angle function S and the radial function R satisfy the ordinary differential equations

d [( l2) dS + (A+ 2 2 2 F S=O 5(A 2 2 SU) =O, (5)

df [( + 2) d (A - h2 { _ lrn2) (6)

Here A represents a separation constant dependent on m, t, and A. There are two solutions
to both Eqs. (5) and (6). Consider only the first solution S(l) to Eq. (5). When h -0, Eq.
(5) reduces to the standard equation for the associated Lengendre function P (7) of the
first kind, where the separation constants are A = e ( + 1); = m, m + 1, .... Thus, for
each pair of integers m and e, both Eq. (5) and Eq. (6) have a solution only for special
values of A = Ag (ih). For A 0 0 we can write

S~ml)(th, 1) =)d' (iAl rd) P + n (1 (7
n

The prime sign means that n 0, 2, 4, ..if I - m is even and n = 1, 3, 5, if
I - m is odd. Substituting Eq. (7) into Eq. (5) and using known recursion formulas for
Pj ( ), one obtains the following three-term formula for the expansion coefficients:

6
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(2m+n+2) (2m+n+ 1) A2 d
(2m+2n 3)(2m+2n+5) n+2 

+ [(m~z~n) (m+n+l)-A Am _ 2 (fm+ n) (m 2i 22+ 3 )n ] d (8)

n (n -1) A2 dn- 0
(2 m + 2n - 3) (2m + 2-1) - 2

with the asymptotic relation

dn 2 2 ° (9)

and the normalization

'(n +2m)! (ieV+ 10(2)' n! =(e-m)!

A knowledge of Af would then allow d to be calculated by an iterative process.

This program, however, is concerned with only the radial functions R(,) (iA, -if)
and Rm,1) (iA, - , '. tsing the general principle that any solution of the scalar wave
equation (say the angle function S) is a suitable kernel for the integral representation of
a second solution (say the radial function R 1) the following expression for the radial
function of the first type R) is obtained by integration over S:

R(1 ( (e-m)! ( 2+im/2 y 'n+m- (n 2m)! d (

where in is the spherical Bessel function of the first type.

Using a known recursion formula or the spherical Bessel functions, the derivative of
RM1 ) is obtained:

d-g -f- i-c) - (! 2+\) E n+m e (n+2m) !d(ih, n+ A d1 (hlf

(12)

x (2n +2m + 1) in + I 1 ) ( 2n+2m+l ) +m + (he)- I+ j ()

Using an asymptotic form for the spherical Bessel function, we can find asymptotic forms
for the radial function of the first kind:



8 VAN BUREN, BAIER, AND HANISH

R (ih, - _O) (e- )! i - (2m)! do (ldt) m - even,ml~~~ ?/m - -@ - -t Fm) 2m+1) !, 1 =evn

= 0, 
e-m =odd, (13)

dM W h-iO) (-M iM
( 2m+ 1)I di (ihimt) hm+e

(14)=0, O e-m = even.
Here (2m + 1)!! (2?n + 1) (2m - 1) (2m - 3) ... (3) (1). Similarly the radial function ofthe second kind R -) (iA, ie) can be expanded in terms of Yn (he), the Neumann functionor spherical Bessel function of the second kind:

___2_ / 2 m/2

R I21 ( ih - ie) = ,f O( -2- , i + - ( + n2m)! E n h f)

(ih,-j) = (- 
f rn)!m dn (iAlm(f)ml 72~F +m)! e2 

x (ny+ rn) h(n+m1) mX2n +2m + nm M 2n +2m +1 Yn + m+l~ i ( +; Yn+ m (he) 

(16)
Since this expansion contains the Neumann function, its usefulness is limited to largevalues of Mt. A second method is necessary to obtain the radial function of the secondkind for small values of h .

Consider the special expansion of the oblate angle function first discovered byBaber and Hasse (4):

S.2 (h, ) = eA1qa(n PM +n (7). (17)
n=O

When this is substituted into Eq. (5), and the recursion formulas of PI (,7) used, it isfound that the expansion coefficients (I't satisfy the three-term recursion formula

2h(n+m+1) (n+2m +1) aTm
(2n+2m+3) n+l

[(n + m) (n + m + 1)-Am 2 l (?ne (18)

hn(n+m) ,2n+2m-1 - =

-ith the asymptotic condition
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came n ~ X n(19)
n~~~~

By substituting i for and Q+n for P'm + n , one can obtain a series expansion of an
oblate wave function in the radial coordinate A. Noting that the asymptotic value of
Q (), the associated Legendre function of the second kind, is

QS () 1 1 (20)

we can use Eq. (17) in its modified form to obtain an expansion of the radial function of
the thirdkind(-R(3)) that will have a radial dependence eihc/hf as I. Allowing for
appropriate constants, this procedure leads to the formula

i [h (F +1) (, 2)] 2m+1 E
RM3(ih, - i ) = e nmtieQMn(i) 21r!A am- QM n (j -) (21)

Now the radial function of the third kind is related to the radial functions of the first and
second kind by the formula

R(3) = R(1 + i R 2) (22)

Equation (21) can be separated into real and imaginary parts:

R() = (a+i3) (+i8) , (23)

where a+iJf = e [h (f+1)(/2)] (24)

2m + I fJmeand y + i = E Q + (i ). (25)
n=-m m

We can now identify R() = ay-P3 (26)

and R(2) = a+,By (27)

or R(2 ) a8+ fR+[ :j]. (28)

The form given by Eq. (28) is used for R(2) to avoid computational difficulties associated
with y. R(2) can now be calculated using Eqs. (24) and (25) and the previously calculated
value for R 1 ).

Similarly the first derivative of the second radial function R(2) is obtained:

dR(1) 1
=ai/+p [ (29)

9
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where m +n) +iAl

+i (2m +n) Qm + n (30)2 1 fl+- (M.

When X = 0, asymptotic forms can be used for R(2) and dR( 2 )/d which take advantage
of the loss of independence of R (and R(2). These special formulas are obtained by rewriting
Eqs. (4.6.15) and (4.6.16) in Flammer (10) to include da(ih lm) satisfying Eq. (10).

DESCRIPTION OF THE COMPUTER PROGRAM OBRAD

The Fortran IV computer program used to calculate the oblate spheroidal radial
functions of the first and second kinds, their first derivatives, and the eigenvalues is
listed in Appendix B. Some details of this program are given below.

Expansion Functions

Several special functions are required: the factorial functions, the associated
Legendre functions of the second kind, and the spherical Bessel functions of the first
and second kinds.

1. The factorials are calculated in the main program in statement 96 + 2 lines through
statement 53. It was necessary to scale FACT (N + 1) = N for N = 170 to 296 to prevent
overflow, since the maximum exponent available on the CDC 3800 at NRL is 307.

2. The associated Legendre functions of the second kind, Q (iX), where X is the
radial coordinate, is calculated in the subroutine QLEG. QLEG is called after Mf and X
have been set and when H = AH, the first choice for H, since Q (iX) is independent of
H. It returns values of Q (ix) for N = 0 to N = 126 + 2M. Q (iX) is either purely real
or purely imaginary depending on whether N is even or odd respectively. Therefore when
N is odd, the real answer returned by QLEG must be multiplied by i to obtain Q (iX).
For fixed these values are stored for all choices of X in the matrix OUTPUT (N + 2,
/X). Here IX indicated the specific X, and N + 2 is chosen so that the first element
stored in OUTPUT is Qm , (iX). When M changes, QLEG is again called for each X when
H = AH.

Qm (iX) is calculated in the main program in statements 4 through 5 using Q(iX)
and Q' (iX) in a backward recursion formula. QLEG uses limiting forms for Q (iX) when
X = 0. When X>0, Q (ix) is calculated from a hypergeometric series, and Q' (iX) is
then obtained by a forward recursion formula. These expressions are given as Eqs. 30
through 32 in Ref. 1 and Eq. 9 on page XVI in Ref. 5.

The output of QLEG was carefully checked for the entire range of M and X necessary
for OBRAD and found to have an accuracy of at least 20 significant figures.

10
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3. The spherical Bessel function of the first kind is calculated in the subroutine
SBESF. SBESF is called after H and X have been set and when L is equal to L, the
first choice for L. It returns values for j (HX) for N = 0 to N = 145, unless HX is greater
than or equal to 100 when it returns values for N = 0 to N = 145 + M. SBESF calculates
j (HX) by a series expansion when HX < 0.4, by a backward recursion relation when 0.4
< HX < 100.0, and by a forward recursion relation when HX > 100.0. These expressions
are given in Ref. 6 as 10.1.2 and 10.1.19. The accuracy in j, (HX) is greater than 20
significant figures for the entire range of HX necessary for OBRAD.

4. The spherical Bessel function of the second kind is calculated in the subroutine
SPHYN by a forward recursion relation given as Eq. 10.1.19 in Ref. 6. If X > 1.0 and
HX > 10.0, SPHYN is called after H and X have been set and when L is equal to L 1. It
returns values of yn (HX) for ' = 0 to N = 143 + M. The accuracy in y (HX) when
HX > 1.0 is greater than 20 significant figures.

Eigenvalues

Before the expansion constants can be evaluated, it is necessary to know the
eigenvalues or separation constants for which solutions to Eqs. (5) and (6) exist.

Starting values or numbers agreeing to at least two places with the correct values
are obtained for the eigenvalues. These starting values are solutions to an eigenvalue
equation which when expressed in matrix form reduces to the problem of diagonalization
of the matrix. The eigenvalues then appear as the resulting diagonal elements when
ordered numerically from lowest to highest. Although the exact determination of the
eigenvalues would require a matrix of order infinity, good starting values are obtained
using matrices of modest proportions. The minimum size matrix used in OBRAD is of
order 50, giving 50 possible starting values. When H < 20, all 50 values are adequate as
starting values, with the lowest eigenvalue corresponding to L = . However, as H in-
creases, the order N of the matrix must also be increased to maintain good starting values
for the 50 lowest eigenvalues. The order N as determined in statement 3 + 14 lines
through statement 3 + 1 lines is adequate to give good starting values for the 50 lowest
eigenvalues when H is less than or equal to 75.

The matrix elements A are obtained in statement 3 + 19 lines through statement 43.
Subroutine EIGEN, which diagonalizes the matrix A, is then called. Details of the matrix
and its diagonalization are given in Ref. 7. EIGEN returns the N diagonal elements in
ascending numerical order. LF - 1 + of these, where LF is the highest L desired, are
now used as starting values in a variational procedure devised by Bouwkamp (8) and
Blanch (9). (When H is greater than 75, good starting values are obtained instead from a
formula given by Meixner (2). This formula is programmed in statements 35 through 37.)
This variational method adds corrections to the starting values, the corrections becoming
successively smaller as the correct eigenvalue is approached. Good starting values are
necessary to assure the convergence to correct eigenvalues. Convergence is assumed
when the relative contribution of the correction is less than 10-24. Because of the

1 1
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limited word length in the CDC 3800 at NRL a more stringent test does not give moreaccurate eigenvalues, but the corrections oscillate around 10-25. This variational methodis programmed in statement 6 + 3 lines through statement 22 + 1 line.

Expansion Constants

1. The first expansion constants that are used d (ihme) are calculated in statement's31 through 32 + I line. These calculations make use of the single subscripted variableENR that has been obtained above in the eigenvalue correction. Although the method isdisguised by the intermediate variable ENR, basically the expansion constants d,(ihlmr) (called DLIST(J)) are calculated using Eqs. (8) through (10). Here the index Jruns consecutively from I to 72. For example, DLIST (3) represents d5 (hM) when
L - M is odd but d4(ihjmQ) when L - M is even.

2. The expansion constants Lil /me , used in the calculation of the radial functionof the second kind, are obtained in statements 252 through 291.

First uncorrected values RATIO (J) are successively calculated by use of the reverserecursion form of Eq. (18) until they begin to decrease (J = IND + 1). Here RATIO
(123 + 2) is chosen equal to 0, and RATIO (122 + 2) is chosen equal to 1.

Next using the fact that dPne _/(jmem ARATIO () = 0 and cimf_ -m ARATIO(2) 1, true values RATIO (J) are obtained by use of the forward recursion form of Eq.(18) until J = IND + 1.

Finally RATIO (J) is corrected by matching to ARATIO (J) at J = INI + 1.

Evaluation of the Radial Functions

The expansion constants and functions are now combined to give the radial functions.The radial functions of both kinds and their first derivatives are calculated for X = 0 instatement 237 through statement 246 + 3 lines. For X 0 the radial function of the firstkind and its first derivative are calculated in statements 211 through 236 using theexpansions given in Eqs. (11) through (14) and the radial function of the second kindand its first derivative are calculated in statement 291 + 1 line through statement
311 + 1 line using Eqs. (28) and (29).

A Wronskian check is made on the two radial functions and their first derivatives instatements 311 + 2 lines through 311 + 4 lines. Here the calculated Wronskian CWRONis compared to the theoretical Wronskian TWRON to give the number of significant figuresthat agree NIAC. When X = 0 the accuracy is determined instead by subtracting from 25the number of accurate figures that are lost during subtraction of nearly equal numbers.

When X > 1.0 and XH > 10.0, Eqs. (15) and (16) are also used to calculate the radialfunction of the second kind and its first derivative. This is done in statement 311 + 7

12
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through statement 324. A Wronskian check is made using these values, yielding the
integer IAC.

IAC is now compared with NIAC in order to choose between the two sets of values
for the radial function of the second kind and its first derivative. If IAC > NIAC, the re-
sults obtained using Eqs. (15) and (16) are printed. If NIAC > IAC, the results of Eqs.
(28) and (29) are printed instead.
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Appendix A

Major Calculation Blocks of OBRAD Listed According to Statement Numbers

Calculation Block Statement Number

From To

Calculate factorials *96 t 2 53

Read data 
1 3 3

Do loops

Set RM 
3 4

Set H 
3 4 10

Calculate the starting eigenvalues
by Subroutine EIGEN 3 4 14 7
by Meixner's formula 35 37

Set X 
38

Generate Q's Using
Subroutine QLEG 38 + 5 5

Set L 
6 + 

Correct the eigenvalues
Calculate constants d

6 + 3

31

Calculate radial functions RI,
RiD, R2, R2D for X = 0

Calculate R, RID using SBESF
237
211

Calculate C? ratios 252

Calculate R2, R2D
by use of Q functions

Decide whether to use
Neumann functions to calculate R2, R2D 311 + 5

*Note: The symbol 96 + 1 signifies statement number 96 plus one line.

14

22 + 1
32 + 1

246 + 3
236

291

311 + I291 + 
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Calculation Block

Calculate R2, R2D by
means of spherical Neumann
functions, subroutine
SPHYN

Calculate Wronskian
(plus accuracy check)

Decide to print out
final result based on
Legendre function approach
or on Bessel function approach

Final printout

c::

a-,

-^

r.n

15

From

311 + 7

To

324

311 + 5
324 + 2

311 + 2
and 324 + I

324 + 3

326 + 1

I



Appendix B

LISTING IN FORTRAN IV OF OBRAD,

A PROGRAM TO CALCULATE OBLATE

SPHEROIDAL RADIAL WAVE FUNCTIONS,

AS COMPILED FOR CDC 3800

17
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PROGRAM ORAO
TYPE DOUBLE AA.AAA.AHARARATIO*ARGARPAYATERMBLISTBOOK CL,
ICOEFF1 9COEFF2 .COEFF3,CORACORB.CWPONDEDHDLDLISTDNDXEI.E2.
2E 3IEJN.EMENRENRC*ESTORE*ESUMEYEiFACT.FN1IFN2,FNMGLISTIHIPI. 4
3OUTPUT.PAPERPCLoPENPL8,PL9PLAPLBPLCPiDPl ,R2.R3iPAD1 RADID,
4RAD2aRAD2D.RATIO.RSTORE RSUMSvSSUMISUBSUMTEMP.TERM.TERMI TERM2,5TERM3eTWRONWt>XXI4XLXXEiGOCRAD2CRA2*DWFSTRAT*DRATIO#DNEG
DIMENSION A(80480)ARATIO(250)ARRAYc250oBLIST(2501)BOK(

2 501sICOEFFI(250) COEFF2(250)COEFF31250)DLIST(200)lDN(200) .EIGaSo)2ENRC250)FNMC250)GLIST(25O)OUTPUT(17O4O)PAPER(
250)*PCL(250)3PEN(2509RATIO(250), (200,AIG(80)DPATIO(30)

COMMON FACT(300)
86 FORMAT(IX13.2X.5(D2417IX),X113,
87 FORMAT(IHls56X,*OBLATE RADIAL FNCTIONS*#///47X,*H =**F51.9X*

I*X *tF6*2v9Xv*M =*13*/3X*L*13X*Rl*23Xo*RID*922X*R2*
223Xq*R2D*918X**EIGENVALUE* 9X**ACC*XI

90 FORMAT(814)
96 FORMATtD32*25)

Pl=3.14159265358979323846264340
FACT(I)wl OD
DO 51 J.l170

51 FACT(J+I)=JFACT(J)
FACTI71)=FACT(171)*(tl0-300
DO 53 J=17129 6

53 FACT(J+I)=J*FACT(J)
I READ 9MlItbM.NM#LI*IDLeNLNHiNX
IFIEOF6O) 502a3

3 READ 96 AH
READ 96sDH
READ 96s XI
READ 96*DX
D021M=I*NM
M=MI+(IM-I)*IDM
EM=M
IF(LI.LT.M) Ll=M
LF=Ll+(NL-l)*IDL
H=AH-OH
0021H=IONH
H=H+DH
AA=-H*H
AAA=AA*AA
N=NI=LF-M+I
IF(H*GT*75*0) GO TO 35
IF(H*GT*20.D) N=NI+(H-20.oD/2*D
IFcN.LT.50 N=50
IF(N.GT.80) N=80
D041 J 2 1 N
D041 1 1N

41 A(t1J) 0
D042 1 leN
XL M + I -

42 A(ll) =XL*(XL+lvl+AA*(2*XL*(XL+lu-2.*EM*EM-lo)/2*XL-l)*
(2**XL+39))
NM2 = N-2
D043 I = 1INM2
XL M + I - I
Atl 1+2) = AA/(2.*XL+3-))* SORTtItXL+-2+EM)*(XL+1.+EM)*
I(XL+2*-EM)*tXL+I-EM))/((2.*XL+5s)*12*XL+ll)))

43 A+2oI) A(Itl+2)
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ANORMI=AA
ANORM2=LF*(LF+t*)
CALL EIGEN(AoAIG#NiNI*ANORM1,ANORM2)
DO 711#N1

7 EIG(1)=AIG(1)
GO TO 38

35 DO 37 LLI*LFo2
P=2**((L-M)/2)+M+io
EJG(L-M+1)=-H*H+2.*H*p-.5*(p*p-M*M+l)-p*cp*p-M*M+l) /(80*H)

1-45*P**4+10.*P*P+ *-2*M*M*(3.*P*P+.)+M**4)/(64#*H*H)
2-P*(33.*P**4+114&*P*P+37-2.*M*M*(23.*P*P+25.)+13.*M**4)/(512.*H**3
3) - 6 3.*P**6+ 3 40.*P**4+239*P*P+14-1O**M*M*(10.*P**4+23.*P*P+3.)
4+3.*M**4*(13o*P*P+6@)-2**M**6)/(1024.*H**4)
5-P*(527.*P**6+4139*P**4+5221*P*P+1009.-M*M*(939g*P**

4+3750.*P*P6+1591*)+M**4*(465.*P*P+63 5.)-53.*M**61/(8192.*H**5)
IF(2*((L-M)/2)sNE9L-M) EG(L-M)=ElG(L-M+I)

37 EIGfL-M+2)=EIG(L-M+I)
38 D021X=I-NX

X=XI+(IX-I)*DX
XX=X*X+I.0
APG=H*X
IF(H*NE*AH*OP*X*EQ*O*D) GO TO 6
LO=125+2*M
CALL OLEG(M*LOsX.O)
DO 81=1*LO

8 OUTPUT(I+1qlX)=oj 1
IF(M*EO0a)4i5

4 OUTPUT(IsIX =D
GO TO 6

5 OUTPUT(llX)=-X*OUTPUT(21X)/EM+(EM-l.D)*OUTPUTI34IX)/EM
6 PRINT 87tHoXoM
D021L1INL
L=LI+IIL-I)*IDL
PL8=2.D*EM+I#D
IFC=O
IUCT5(L-M)/2
IR1O=IUCT+i
IR=IRIO+I
CL=EIG(L-M+I)
IF(2*IUCTNE*(L-M)) GO TO 10

11 ID=2
1=75
IC=2*M
GLIST(I)=EM*(EM+1oDI+AA*(Pt-B-2.0)/(CPLB-2.D)*(PLB+2.0)1
GO TO 12

10 ID=3
1=74
IC=2*M+I
GLIST(I)=(EM+I.0)*CEM+2.D)+(6D*EM43.D)/(PLB*(PLB+

4aD))*AA12 LIM=150
I18=18-1
DO 131=DLIM.2
EYE=I
BLISTC(I-ID+2 )/2)=EYE*(EYE-lD*(LB+EYE-E1.)*(LB+EYE-2D)*AAA/
1((PLB+2*D*EYE-4.D)*CPL8+2*D*EYE)*(PLB+2.D*EYE-2@)*(PLB+

2 D*EYE-
22.0))

13 GLIST(CI-ID+4)/2)=(EM+EYE)*(EM+EYE+1D)+oSD*AA*(CI&D)-.PLB*PLB-2.D
1*PLB)/(CPLB+2.D*EYE-2.0)*cpLB+2*EYE+2D)))

17 ENPMI)=CL-GLlSTC1)
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DO 181=lI.UCT
18 ENF(1+1)=-8LISTC1)/ENR(I)-GLIST(I+l)+CL

ENR(IB)=-BLIST(16l/lGLIST(1B+1)-CLI r
IP= IB+IR
DO 19 IR411B
IPI= p-l

19 ENR(IPI)--BLIST(IPJ)/(GLIST(IPI+l1-CL+ENR(IPI+lI)
ENRC=-BLIST(IRIO)/(GLIST(IR)-CL+ENR(IR))
DE=ENPC*ENRC/8LIST(IRIO)
CORS=DE
DO 20 T=!RIS
DE=ENRP()*ENP(I)/BLIST(I)*0E
CORB=COQ6+DE

20 IF(DASSDE/COR8)&LT*I*D-27) GO TO 23
23 CORA = ID

DE=I.D
DO 26 ImIsIUCT
DE=BLIST(IRIO-I)/(ENR(IRIO-I)NR(! IO-1I))*DE
CORA=CORA+OE

26 IF(DABS(DE/COPA).LT.oD-27) GO TO 27
27 DL=(ENRC-ENR(IPIO) /(CORA+COR8)

CL=CL+DL
IF(DA8S(DL/CL)aLT.I#D-

2 4) GO TO 22
IFC=IFC+I
IFCIFCoLT*50 GO TO 17

22 CONTINUE
EIG(L-M+I)=CL

31 AR=IO
DN(I)=( 2 .D*EM+2.D*AR-.D)*12.oD*EM+2.D*AP+l.o#)*ENP(l))/
1((2.D*EM+AR)*(20*EM+AP-I.0)*AA)
W=DN(I)*FACT(2*M+ID+I)/FACT(ID+I)
D030J=241B
AR=ID+2*(J-1)
DN(J)=DN(J-ll*(l2#D*EM+2*D*AR-l.D)*(2&D*EM+290*AR+1.0)
l*ENR(J))/(2*D*EM+AR)*12nD*EM+AR-loD)*AA)
DW= DNtJ)*(FACT(2*(M+J)+ID-I)/FACT(ID+2*J-1))
IF((2*(M+J)+ID-1I.GT 1701 DW=DW*ID+300

30 W=W+DW
DLISTCI)=FACT(L+M+I)/(FACT(L-M+2)*(W+FACT( IC+ I))I
0032J=1970

32 DLISTCJ+I)=DN(J)*DLtST(1,
DLIST172)=OD
IF(X.NE*O*O) GO TO 200
DRATIO(I)=O*D
DNEG=DL T ( )
DO 33 I=lM
DRATIO41+1)=-(I+I+ID-2.D)*(+I+ID-3D)*AA/(

4*1+D+ID-M-M-159D)*(4*1+ID+ID-M-M-3.D))/((I+I+ID-M-4.0)*(1+I+ID-M-3*D)-CL+(2.D*
2(1+1+ID-M-44D)*(1+1+I-M-3D)-M*M-M*M-1.0,AA/((4/1+ID+1D-M-M-9.D)
3*(4*1+I0+ID-M-M-5*D))+AA*(I+I+ID-M-M-4D)*(1+!+1D-M-M-5D)*
4DRAT1Od1)/114*1+ID+ID-M-M-II.D)(

4*1+1D+O-M-M-9.DI,
33 DNEG=DNEG*DRATIO 1+1)

TERM=FACT(M+M+ID+ID-3)/12*0**(ID-2)*FACT(M+10-1))
FSTPAT=TERM*DLIST()
TEPM2=DA6S(FSTPAT)
DO 34 1=2471
TERM=-TERM*(M+M+I+ I+ID+ID-6)*(M+M+I+I+ +10D-7)/(4 *D* - *(M+I+ID

1-3)1
TERMI-TERM*DLIST(l)



I-,

NRL REPORT 6959 21 F.n

TERM2=DMAXI(TERM24DABS(TERM1)) x t
34 FSTRAT=FSTRAT+TERMI

IAC=26-DLOGIO(TERM2/DABS(FSTRAT)
IF(IAC*GT*25) IAC=25
GO TO 237

200 EI=DSIN(ARG)/(H*FACT(M+I))
Rl=DCOS(ARG)/(H*FACT(M+I))
GO TO (2O1*20392054206)oL-(L/4)*4+1

201 E2 = - PR
R2 z El
GO TO 207

203 R2 = - RI
E2 = - El
GO TO 207

205 E2 = I
R2 = - El
GO TO 207

206 P2 = I
E2 El

207 GO TO (208s209.208.209)vM-(M/4)*4+1
208 E3 = R2

R3 = - E2
GO TO 210

209 E3 = R2
R3 = E2

210 IF(LoNE*LI) GO TO 211
LNE=145
IF(X*H.GE#100D) LNE=LNE+M
CALL SBESF(ARG4LNE*ARRAY)

211 PLA=DSORT((XX/(X*X))**M)*FACT(L-M+1)/FACT(L+M+I)
IA=1
IF(2*IUCT*NE.(L-M)) IA=IA+I
IC=IA+142-M
IF(X*H*GE*1000*0 IC=IC+M-4

214 SUBSUM 0 0
215 00 217 K IA. IC 2

IBOX3=SABS((K+M-L-1)/21
BOOK(K)=DLIST(CK+l)/2)*ARRAYCK+M)*(FACT(K+2*M)/FACT(K))
IF((K+2*M)*GT*170) BOOK(K)=BOOK(K)*1.0+300
IF(2*(1BOX3/2).NE.IBOX3)BOOK(K)-OOK(K)

216 SUBSUM BOOK K) + SUBSUM
IF(DAeS(BOOK(K)/SUBSUM)LT*ID-27) GO TO 219

217 CONTINUE
219 RAO1=PLA*SUJBSUM

SSUMI=OD
DO 234 K=IAIC92
IBOX3=IABStUK+M-L-I)/2)
IDS = K + 112
PCL(K)=DLIST (IDS)*(FACT K+2*M)/FACT (K)
IF((K+2*M).GT.170) PCL(K)=PCL(K)*I*D+300
IF(2*( IBOX3/2).NE.lf0X3) PCL(K)=-PCL(K)
PLD'K+M-I
IF((K+M-I)eEQ*O) 2309231

230 PEN (K) = - ARRAY (2)
GO TO 232

231 PEN(K1=(PLD*ARRAY(K+M-Il-(PLO+Izo)*APPAYcK+M+l)),/ 2 .D*PLD+I.O)
232 PAPER K) = PCL (K) * PEN (K)
233 SSUMI = PAPER (K) + SSUMI

IF(DA5S(PAPER(K)/SSUMl),LT*1*O-27) GO TO 236
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234 CONTINUE
236 RADID=(H*SSUMI-EM*SUBSUM/(X*XX))*PLA

GO TO 252
237 DO 239 1=2oM
239 PLB=PLB*(2*M-2*1+

3)PLC=FACT(L-M+1*FACT(2*M+I)*DLIST(I*H**M/(FACTtL+M+ll*P 
BlGO TO (24 09242 s244246).(L-M)-((L-M)/4)*

4+1240 RAOI=PLC
RADID=OD
PAD2=(M+M-I)*pI*FACT(M+1)*FACT(L-M+I)*(H/2.D**M*FSTRAT*FSTRAT
1/(+FACTtM+M+ll*FACT(L+M+11*2*D*H*DNEG)
PAD20=1*D/(H*PADI)
GO TO 326

242 PADI=O.D
RADID=PLC*(2.0*EM+I*D)*H/(2D*EM+3*DI
RAD2=-1 D/(H*PAOID)
RAD2D= (M+M-3 )*(M+M-I)*FACT(M+1*FACT(L-M+l)*Pl*(H/2*D)**M*
IFSTPAT*FSTRAT/(FACT(M+M+l)*FACT(L+M+I)*2.D*H*H*DNEGI
GO TO 326

244 ADI=-PLC
RADI=0.0
RAD2=(M+M-1)*P*FACT(M+I)*FACT(L-M+I*(H/2.D**M*FSTRAT*FSTRAT
I/(-FACT(M+M+l)*fACT(L+M+1)*2.D*H*DNEG)
PA020=IoD/(H*RA0I)
GO TO 326

246 PADI=O.
RADlD=-PLC*(2.0*EM+I1O)*H/(

2 D*EM+3*D)RAD2=-l*O/(H*PADID5
RAD20=-(M+M-3)*cM+M-l)*FACT(M+I)*FACT(L-M+I)*Pl*(H/2.D)**M*
lFSTRAT*FSTRAT/(FACT(M+M+I)*FACT(L+M+I)*2O*H*H*DNEG)
GO TO 326

252 MA=2*M+123
GO TO 256

254 MA=MA-20
256 JS=MA-M-2

S=Js
PATIO(MA =OD
IMA = MA - 2
RATIO (IMA = ID
DO 253 J = 1 mA
I=IMA-J+l
COEFF (I)=2.O*H*(S+EM+-.D)*(S+2 0*EM+1 0)/(2eD*S+2*D*EM+3.D
COEFF2 1) (S + EM) * (S + EM + 10) - CL - H * HCOEFF3 (11 2*D*H*S*(S + EM)/(2.0*S + 2*EM -I*D)253 S = S - 10
ARATIO (2) 1. 0
ARATIO 1 = O D

269 00 280 =IoJS
K=JS-I+I+M
FNI = COEFFI (K + ) * RATIO (K + 21
FN2 = COEFF2 K + ) * RATIO K + 1)

270 PATIO (K) (FNI - FN2)/COEFF3 (K + 1)IF(DABS(RATIO(K))*GT*I*D+
3 0 0 ) GO TO 254

IF(DABS(RATIO(K+I)).GT.DABS(RATIO(K))) GO TO 272280 CONTINUE
IND=K
GO TO 274

272 IND=K+I
274 IF(INO.LTo2) INO=2
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281 DO 289 J=14K
IJ = + I
FNI = COEFF2 (J) * ARATIO IJ)
FN2 COEFF3 (J * ARATIO (IJ - 1)
ARATIO (IJ + 1) (FNI + FN2)/COEFFI (J)

289 CONTINUE
RAT!O(I)=RATIO(IND)/ARATIO(IN0+I)
DO 291 I=INDqMA

291 ARATIO(!+I2=RATIO(I),RATIO(Il)
RSUM=OUTPUT(39JX)*ARATIO(3)
ESUM=OUTPUT(2*IX)
RSTORE=-OUTPUT(2, X)*(CEM+1.O)*ARATIO(3)+H)
ESTORE=EM*OUTPUTIIX)/XX+OUTPUT(3,1X)*ARATIO(3)*H
IF(M#EOeO) ESTORE=ESTORE+I*D/XX
DO 306 K=4tMA
AR=K
TERMI=OUTPUT(K*IX)*ARATIO(K)
TERM3=-ARATIO(K)*(EM+AR-2*0)*OUTPUT(K-1,IX)/XX
IF(2*(K/2)*EO*K) GO TO 304
RSUM=RSUM+TERMI
ESTORE=ESTOQE+TERM1*H
RSTORE=RSTORE+TERM3
IF(AOS(TERMI/ESTORE)*LT.lD-27*AND*ABS(TERM3/RSTORE).LT.l10-27

IAND.A8S(TERM1/RSUM)LTIeD-27) GO TO 309
GO TO 306

304 TERM2=TERMI*X*(AR-2s0)/XX
ESUM=ESUM+TERM I
RSTORE=RSTORE-TERMI*H
ESTORE=ESTORE+TERM2-TERM3

306 CONTINUE
309 PSUM = (PADI + E3 * ESUM)/P3

RSTORE = (RADID + E3 * ESTORE)/R3
311 CRAD2=R3*ESUM+E3*RSUM

CRAD2D=R3*ESTORE+E3*PSTORE
TWRON=I#D/(H*XX)
CWRON=RADl*CRAD2D-CRAO2*RADID
NIAC=-DLOGIO(DABS(ITWRON-CWRON)/TWRON)+1.O-26)
IF(X.LEsIoD.OR.(X*H)*LE*10D1 GO TO 325
IF(L.NE#LI) GO TO 313
LNE=141+M
CALL'SPHYN(ARG*LNEFNM)

313 JN=I
IF(2*((L-M)/2).EO.(L-M))JNmO
RAD2=0.D

315 K=1+JN/2
TERM =FACT(JN+2*M+I)/FACT(JN+I)*DLIST(K)*FNM(JN+M+I)
IF((JN+2*M+1).GT.170) TERM=TERM*I.D+300
IF(4*((JN+M-L)/4)NE(JN+M-L)) TERM =-TERM
RAO2=RAO2+TERM
IF(K.LT*5) GO TO 316
IF(DABSITERM RAD2)&LT.(I.D-27)) GO TO 318

316 JN=JN+2
GO TO 315

318 RAD2=RAD2*PLA
PL9=-EM/(X**3+X)
RA020=0*0
JN=JN-2*(JN/2)

320 K=l+JN/2
EJN5JN

23
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PLS=H/(2.O*EJN+2.D*EM± .D)TERM =FACT(JN+2*M+1)/FACT(JN+1)*DLIST(K)*PL8*(CEJN+EM)*
I FNM(JN+M)-(EJN+EM+1*D)*FNM(JN+M+

2 ))+PL 9 *FNM(JN+M+I) IFt(JN+2*M+1)*GT*17O) TERM=TERM*I.D+
30 0IF(4*(cJN+M-L)/4)oNE*CJN+M-L)) TERM =-TERM

RAO2D=RAD2O+TERM
IF(K*LT*5) GO TO 322
IF(DABS(TERM RA02D)*LT*(Iv0-271) GO TO 324

322 JN=JN+2
GO TO 320

324 RAD2D=RAD2D*PLA
CWRON = ADI * RAD2O - RAD2 * RADIO
IAC -DLOGIO(DABs((TWRON-CWRONI)TWRON)+I*D-26)
IF(IAC.GT#NIAC) GO TO 326

325 RA02=CRAD2
RAD2D=CRAD20
IAC=NIAC

326 IF(IAC.LT*O) [AC=O
PRINT 86 9L*RADO1RADIDRAD2RAD2DEG(L-M+)IAC

2 CONTINUE
GO TO 1

S02 END

SUBROUTINE SBESF(XH#LJoRAY)
DIMENSION RAY(250)
TYPE DOUBLE CP4FACTiRAY.SUM*TERM.TKTMXHXlXZ

2HCOMMON FACTt300)
L = 0

1 IF (XH.GEoo4D) GO TO 4
22H=XH*XH/2.0
00 3 N=LLJ
TM=FACTCN+ )*(XH +XH)**N/FACT(N+N+

2)IF(N*GT*84) TM=TM*I*D- 3 00IFCTMoEGO*D) GO TO 8
SUM=160
TERM ID
DO 2 1=1,50
XI=I*(N+N+1+1+1)
TERM=-TERM*Z2H/XI
SUM = SUM + TERM

2 IF(DA8S(TERM/SUM)LT1*D-
2 6 ) GO TO 3

3 RAY(N+I) =TM*SUM
RETURN

4 N=170
IF(XH.LT.100.DI GO TO 20
RAY(I)=DSIN(XH)/XH
PAY(2)=(RAY(1)-0COS(XH))/XH
DO 11 K=1.LJ

11 RAY(K+2)=(K+K+)*PAY(K+I)/XH-RAY(K)
RETURN

20 IF(XH.GT*1O.D) N=210
RAY(N+I =1D-25O
RAY(N+23=O.
I = -N
M = -1
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DO 5 KK=IsM
K KK
TK=K+K+I

5 RAY(K)=TK*RAY(K+I)/XH-RAYCK+2)
CP=DSIN(XH)/(XH*RAY(1))
IF(DSIN(XH).LT#.1D-2) CP=(DSIN(XH)/XH-DCOS(XH))/(XH*RAY(21)
DO 6 L=19LJ

6 RAY(L)=CP*RAY(L)
8 DO 9 J=NLJ
9 RAYCJ+I)=O*D

END

SUBROUTINE SPHYN(X4N*ARR)
DIMENSION ARR(250)
TYPE DOUBLE XAPRRTKPI
ARR(1)=-DCOS(X)/X
APR(2)=ARR(I)/X-DSIN(X)/X
DO 2 K=14N
TKPI=K+K+I

2 APR(K+2)=TKPI*ARRK+I)/X-ARR(K)
END

SUBROUTINE EGENtA.VALUNN.ANORMIANORM2)
DIMENSION A80.80),VALUI8O),DIAG18010(80)VALL(8SI
NN=N-2
DO 160 I=l.NN
I1 1+2
DO 160 J=1lN
TI=A(I t+l)
T2=A(I.J)
IFCT2*EQ*O0) GO TO 160
T=I ./SOPT(TI*TI+T2*T2)
SIN=T2*T
COS=Tl*T
DO 105 K=l.N
T2=COS*A(K*,+1 )+SIN*A(KJ)
A(KJ)=COS*A(K4J)-SIN*ACKI+I)

105 A(K*I+l)=T2
DO 125 K=liN
T2=COS*A +1 KI+SIN*A(J*K)
A(JK)=COS*A(JtK)-SIN*A(I+I*K)

125 A(I+liK)=T2
160 CONTINUE

D0151=1 N
DIAG(Il=A(lol)

VALL(I)-ANOPMI
15 VALU(I)=ANOPM2

1=1
MATCH = N

18 TAU=(VALL(I)+VALU(I))/2o

0
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IF (MATCHoNE 1-I) LATCH = MATCH
MATCH = 0
TO=O.
TI=l E-100
DO20J=IfN
T2=(DIAG(J)-TAU)*TI-O(J)*TO
IF((TI.NE.O,),ANtD,((T2*T1,.LE*O0), MATCH=MATCH+I
TO=TI

20 Tl=T2
0025K=I MATCH

25 VALU(K)TAU
NATCH=MATCH+I
DO 30 KNATCHLATCH

30 IF(TAU*GT.VALL(K)) VALL(K)=TAU
40 IF((VALU(I)-VALL(1)).GT.(I*E-4)) GO TO 18

1 1+1
MATCH = N
IF(I*LE.NI) GO TO 40
END

SUBROUTINE OLEGCMLNX,0)
DIMENSION 0(200)
COMMON FACT(300)
TYPE OUGLE BECO EFD1 *DK*CM9CNoCT,'A.OSUMTERMXYAtYA,,ZZA
DM=M
NN=O
YA=DSORTiX*X+I*D)
ZA=lYA+x)*(YA+X)
XA=0*25D*(YA+X)
Z=2.D/(YA+X)
LNM=LN+ I
DO 135 N=NN*LNM
ON=N
BE=DN+ .0
GA=DN+3.5D
IF(N.GT#84) GO TO 500
COEF=ZIXA**(-N)*CFACT(N+I) /FACT(N+N+2) FACT(N+I))
GO TO 510

500 COEF=Z*XA**4-N)*iFACT(N+I) *C1.D-300*FACT(N+1)/FACT(N+N+2))
510 SUM=TERM=I.D

DK=-1 D
130 DK=DK+I.D

IF(DK.GT.5000.1 GO TO 135
131 TERM=-TERM*(DK+.50)*(BE+DK)/((DK+I.D)*ZA*(GA+DK))

SUM=SUM+TERM
IF(A8S(TERM/SUM),GT.1.E-27) GO TO 130

135 O(N+I)=-COEF*SUM
DO 30 I=l#M
Dl=l
00 30 N=NN*LN
ON=N

30 OCN+I)=-I(DI+0N)*X*O(N+I)+(DN-DI+2*D)*Q(N+
2 ))/YADO 40 N=NNoLN

IFC(2*((N+1)/4))oNE.((N+I)/2, O(N+I)=-Q(N+I)
40 IF(2*(N/2).NE.N) ON+I=-O(N+I)
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Appendix C

SAMPLE OUTPUT FROM OBRAD
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